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The behaviour of a granular flow a t  a boundary cannot be specified independently of 
what is happening in the rest of the flow field. This paper describes a study of two 
fictitious, but instructive, flat boundary types using a computer simulation of a two- 
dimensional granular flow with the goal of trying to understand the possible effects 
of the boundary on the flow. The two boundary conditions, Type A and Type B, 
differ largely in the way that they apply torques to the flow particles. During a 
particle-wall collision, the Type A boundary applies the force at the particle surface, 
thus applying the largest mechanistically possible torque t o  the particle, while the 
Type B boundary applies the force directly to the particle centre, resulting in the 
application of zero torque. Though a small change on continuum scales (i.e. the point 
at  which the force is applied has only been moved by a particle radius) it makes a 
huge difference to the macroscopic behaviour of the system. Generally, it was found 
that, near boundaries, large variations in continuum properties occur over distances 
of a particle diameter, a non-continuum scale, throwing into doubt whether 
boundaries may be accurately modelled via continuum mechanics. Finally, the large 
torques applied to the particles by the Type A boundary induce asymmetries in the 
stress tensor, which, in these steady flows, are balanced by gradients in a couple 
stress tensor. Thus, near boundaries, a frictional granular material must be modelled 
as a polar fluid. 

1. Introduction 
Conventional fluid mechanics has the luxury of a no-slip condition, which requires 

that the velocity of the fluid immediately adjacent t o  a solid boundary assumes the 
velocity of the boundary. This allows the mechanical properties of the material a t  
the boundary t o  be specified independently of whatever is happening in the rest of the 
flow field. Granular materials are not so blessed and the flow behaviour a t  a solid or 
free surface is an integral part of the solution for the entire flow field. For example, 
there will generally be velocity slip a t  the boundary which is determined by the 
manner in which the flow interacts with the boundary and thus acts to match the 
physical nature of the boundary with the flow far from the boundary. 

A strong effect of the boundary characteristics has also been noted experimentally. 
Savage & Sayed (1984) and Hanes & Inman (1985) both performed nearly identical 
shear cell tests on nearly identical materials. The only major difference between the 
two studies was the way in which their bounding walls were roughened. (In this type 
of device, walls are roughened in order to make a good mechanical contact between 
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the test material and the driving surfaces.) Yet Hanes & Inman measured stresses 
that were u p  to  three times larger than Savage & Sayed for otherwise equivalent 
conditions. Similarly, Craig, Buckholtz & Domoto’s (1987) study of the effects of 
shear cell boundary conditions indicates that the condition of the drive surfaces often 
has a larger impact on the measurement than the material tested. Differences in the 
boundary may also explain discrepancies in some chute flow experiments and 
simulations. For example, the boundary characteristics could explain the presence of 
the inflexion point observed in the chute flow velocity profiles measured by Savage 
(1979) and Ishida & Shirai (1979) that were missing from those measured by Bailard 
(1978), Campbell & Brennen (1985 b ) ,  Drake & Shreve (1986) and Augenstein & Hogg 
(1978). Also, the corresponding solid fraction profile observed by Campbell & 
Rrennen (1985b), Bailard (1978) and Ridgway & Rupp (1970) show a low-density 
zone near the chute bottom that is nearly absent from the data of Ahn, Brennen & 
Sabersky (1991). The different results may be attributed not only to the character of 
the boundary but also to the fact that  these studies were performed on different 
materials that may interact with similar boundaries in very different ways. Also, 
Zhang & Campbell (1992), have studied the special type of boundary that forms 
hetween flowing and stagnant regions of a granular flow. 

Several theoretical studies have incorporated boundary conditions into the 
solution of simple flow fields. The first of these, Hui et al. (1984), modelled the wall 
interaction as an equivalent roughness coefficient, but neglected the shear work 
performed by the boundary due to the velocity slip at the surface. Jenkins & 
Richman (1986) developed a set of boundary conditions for two-dimensional smooth 
circular disc flows in the neighbourhood of a boundary composed of semicircular 
bumps glued to a flat wall. However, a complication became apparent in examining 
the corresponding solutions to Couette flow problems. The results showed that, for 
a given separation distance between the driving surfaces, a steady flow was possible 
for one and only one average value of the solid fraction. In  contradiction, shear cell 
experiments and computer simulations of these flows indicate that steady flows are 
possible for any average concentration. This work was later extended by Richman 
& Chou (1988) and by Richman (1988). These latter two works suggested a heuristic 
solution to  the uniqueness problem by not strictly applying the continuity of normal 
stress at the boundary. But the resolution of the uniqueness problem was found by 
Hanes, Jenkins & Richman (1988). They noted that, as the presence of a wall causes 
a local distortion in the arrangement of particles in its immediate vicinity, the 
concentration of the flow in the immediate neighbourhood of the boundary could be 
a free parameter to be determined as a matter of course in the application of the 
boundary conditions. Allowing the density at the wall to  vary introduced enough 
freedom in the solution to  allow steady flows at any average concentration. (It turns 
out that this solution to  the problem is essentially equivalent to the heuristic 
arguments used by Richman & Chou 1988 and Richman 1988.) 

An extremely strong effect was also noted in the computer simulation studies of 
Couette flows performed by Campbell & Brennen ( 1 9 8 5 ~ ) .  I n  this early work, they 
characterized the wall-particle interaction by assuming that, on departure after a 
collision with the wall, there was no relative velocity between the wall and the 
contact point on the particle, i.e. there was no slip between the particle surface and 
the wall. This, they referred to as a ‘Type A ’  boundary. Because the collision impulse 
is applied at the  edge of the particle rather than the centre, the particle experiences 
a torque which induces large rotation of the particle. One drawback of this scheme 
is that the particle more or less rolls over the wall, allowing a great deal of slip 
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FIGUEE 1. Type A (0) and B (0) bouridary conditions comparisons. Data taken from 
Campbell & Brennen ( 1 9 8 5 ~ ) .  (For the Type A condition, v = 0.53, for the Type B condition, 
v = 0.45.) 

between the velocity of the particle centre and that of the wall. Under such 
conditions the bulk shear rate becomes somewhat independent of the wall velocities. 
With the sole intent of gaining control of the imposed shear rate, Campbell & 
Brennen introduced an alternative boundary condition which assumed that, on 
departure after a collision with a wall, the particle centre assumes the same velocity 
as the wall, i.e. there is no slip between the particle centre and the wall with no 
change in the rotation rate. This they called the ‘Type B ’ boundary condition. One 
essential difference with the Type A condition is that the Type B condition does not 
provide a torque to the particle and does not induce a large rotation at the wall. 

This may seem to be a minor change - the application point of the force has been 
moved only a particle radius, which should be insignificant on continuum lengthscales 
 but it has a dramatic effect on the flow field. Figure 1 shows some of the two- 
dimensional Couette flow data take from Campbell & Brennen (1985a). The 
simulation from which this is derived is nearly identical to that used in the current 
study (which is shown in figure 3 and will be discussed later). Figure 1 ( a )  shows the 
profile of the average velocity, (u>, normalized by the top wall velocity, U. Figure 
l ( b )  shows the corresponding distribution of the solid fraction, v ,  which is a 
dimensionless density that laterally means the fraction of a unit area covered by solid 
material. Figure 1 ( c )  shows the distribution of the ‘granular temperature’, T ,  which 
is twice the kinetic energy per unit mass associated with the random velocity of the 
particles and has been shown to fill a similar role in rapid granular flows as the 
thermodynamic temperature does in gases and liquids. (For more information on 
how these quantities are found, the reader is referred to Campbell & Brennen 1985a.) 
Please note that the granular temperature as plotted throughout this paper includes 
the fluctuating rotational velocity. Also, note that in this plot as in Campbell & 
Brennen (1985a) the granular temperature is scaled by dividing by the square of the 
top wall velocity, U. (A different scaling for the granular temperature will be used for 
the data presented later in this paper.) The vertical axis for all three plots is the 
vertical coordinate, y, divided by the shear gap thickness, H .  The two sets of data 
were taken for as close to the same wall velocity, shear gap thickness, and overall 
solids concentration as appears in the Campbell & Brennen data;  the most significant 
difference between them is the wall boundary condition. 

The results for the Type A condition show the expected slip velocity at the wall. 
In addition, there are relatively large velocity gradients near the wall, corresponding 
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to  which are regions of reduced density and large granular temperature. (This clearly 
illustrates the similarities between the granular and thermodynamic temperatures. 
Simply put, as there is no vertical acceleration of the system, the normal stress must 
be constant across the shear gap ; the large granular temperature allows the applied 
stress to be borne by a reduced particle concentration in much the same way as an 
elevated thermodynamic temperature allows a gas a t  a reduced density to resist a 
given pressure.) The source of the large granular temperature near the wall is, at  least 
in part, a function of the low density and large velocity gradients. First of all, the 
large velocity gradients imply larger impact velocities, and, as the random velocity 
generated in a collision is proportional to the impact velocity, one also expects larger 
granular temperatures. Now, while granular temperature is generated in collisions, 
it is also being dissipated by the collisional inelasticity. A reduced particle 
concentration implies a smaller collision rate with consequently smaller temperature 
dissipation ; hence, one expects larger granular temperatures in regions of reduced 
density. (This temperature generation/dissipation process is described in detail in 
the review article by Campbell 1990.) Furthermore, to complete the circle, as the 
shear stress must be constant across the channel, larger velocity gradients are 
required t o  transfer the shear stress in regions of reduced density. 

On the other hand, the Type B profiles are vastly different. First of all, as might 
be expected from the construction of the boundary condition, there is no slip velocity 
at  the walls. However, unlike the Type A condition, these flows show a roughly 
uniform velocity gradient, density and temperature across the channel. Note also 
that, as the mean velocity gradient is larger than for the Type A boundary, the 
average magnitude of the granular temperature is correspondingly increased. The 
same arguments used above can be applied here : because the velocity gradient and 
solid fraction are uniform, the granular temperature is uniform which in turn permits 
a uniform velocity gradient. (In their inclined chute flow simulations, Campbell & 
Brennen (1985 b)  showed similar behaviour for the same two boundary conditions.) 

Note that the Type A boundary acts as a source of granular temperature. The 
largest temperatures occur near the wall and the large temperature gradient leading 
away from the walls indicate a conduction of temperature towards the centre of the 
channel. The Type B boundary shows a slight temperature deficit at the wall. On one 
level, this indicates that  the boundary is acting as a temperature sink. However, the 
effect is confined to the immediate vicinity of the wall and, as far as the bulk of the 
flow is concerned, the granular temperature i s  uniform. Hence, from a continuum 
viewpoint, the Type B boundary appears to be neutral and neither a source nor a sink 
of granular temperature - at least under these flow conditions. 

While this explains the interconnection between the velocity, density and 
temperature profiles, it  does not account for why one behaviour is associated with the 
Type A boundary condition and the other with the Type B. The observations 
presented in the rest of this paper indicate that the controlling factor is the way that 
the boundary transmits torque to the particles. The Type A boundary imparts a 
large rational speed to the particles which is roughly equal to the slip velocity divided 
by the particle radius. As this rotation is a coherent and not a random velocity, it is, 
itself, not a contribution to the granular temperature. However, on subsequent 
collisions, the frictional coupling between the particle surfaces will transfer this 
coherent rotational velocity into both rotational and translational velocities ; the 
resulting particle velocities depend on the geometry of the particular collision, and, 
thus, in a macroscopic sense, will be randomly distributed and appear as granular 
temperature. Thus, the large rotational imposed a t  the wall provides a local source 
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of granular temperature ; the high granular temperature forces a lower density and 
larger velocity gradients, all of which feed back to further elevate the granular 
temperature. The Type B boundary applies no rotation and thus does not act as a 
temperature source. Without this large temperature source, conduction-like 
processes even out the internal granular temperature and allow uniform velocity 
gradients and solid fraction distributions. 

This paper studies this problem in much greater detail, paying particular attention 
to the ways that torques are applied to the particles. While the Type A and Type B 
boundaries are somewhat fictitious, they are ideal for this purpose as they represent 
extremes in how they apply torque to the particles ; by not allowing slip between the 
particle surface and the wall the Type A boundary applies the maximum, 
mechanistically possible, torque to the particles while, by its definition, the Type B 
boundary applies zero torque. In  this way, I hope to highlight important features of 
the flow field/boundary interaction. A companion paper, Campbell (1993) will study 
more realistic boundary conditions created by gluing solid particles to walls. A 
preliminary (and not entirely correct) report of this work appears in Campbell (1988). 

2. Computer simulation 
This study is performed in a computer simulation that is nearly identical to that 

used by Campbell & Brennen (1985~) and so will only be briefly described here. The 
situation studied is a Couette flow of two-dimensional discs, each with mass m and 
radius R,  trapped in a control volume which is shown schematically in figure 2. The 
control volume is bounded on the top and bottom by solid walls which are separated 
in the y-direction by a distance H .  To induce a shear flow the top wall is set in motion 
in the x-direction with a velocity U relative to the bottom. As in Campbell & 
Brennen’s (1985a) simulation, the spacing of the solid walls is not fixed. Instead, a 
normal force is applied to the boundary and the spacing of the boundary adjusts 
itself to balance the applied force. One enhancement incorporated into the current 
simulation is a control scheme that periodically checks the wall spacing and varies 
the applied normal force t o  keep the wall spacing nearly fixed. The scheme is based 
on Bagnold’s (1954) finding that the stresses vary with the square of the shear rate 
so that, with the wall velocity held constant, the stress varies as the inverse square 
of the wall separation; with that concept in mind, the applied normal stress is 
periodically varied as the square of the ratio of the current and desired wall 
separations. These simulation used a wall spacing of forty particle radii (unless 
otherwise specified). In  the direction of flow, the control volume is bounded by 
periodic boundaries. This is realized in the simulation by dictating that when a 
particle exits the downstream periodic boundary, it re-enters the upstream 
boundary with exactly the same y-coordinate and velocity with which it left, thus 
simulating a case in which the control volume is periodically repeated, infinitely 
many times, up- and downstream. Once started, the simulation is allowed to progress 
until it reaches a steady state. From that point on, the properties of the system are 
averaged to obtain whatever information is required. 

The particles interact by colliding with one another. Each collision is assumed to 
occur instantaneously once the particle surfaces come into contact (this is essentially 
the hard-sphere approximation often used in the kinetic theory of gases) and the 
collision result is computed from a standard centre-of-mass collision solution. 
Because the particles rotate as well as translate, two conditions are required to close 
the system of equations : one for the relative particle velocities normal to and one for 
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FIGURE 2. Schematic of the simulated system. 

the velocities tangential to the particle surfaces at  contact. The normal velocity 
condition assumes that the particles are ‘nearly elastic’ in the sense that energy is 
dissipated as a result of the collision, but the particles retain their circular shape. 
This is realized in the simulation through a coefficient of restitution, e (e = 0.8 is used 
throughout this study), which is the ratio of the approach to recoil velocities, and is 
specified as an input parameter to the program. For the tangential condition, the 
particle surfaces are assumed to interact frictionally. The impulse, J ,  exerted by the 
collision is then 

J =  &+xp (2.1) 

Here JN represents the collisional impulse normal to the point of contact: 

JN = +(I +c)  ( q * k ) k ,  (2.2) 

where m is the mass of the particle, e is the coefficient of restitution, q = u, - u, is the 
relative velocity of the particles just before collision, and k = (x,-x,)/~~x,-x,~~ is 
the unit vector pointing along the line connecting the particle centres at the instant 
of collision. (Here, x1 and x, are vectors pointing from the origin to the centres of 
particles 1 and 2 respectively and u1 and u2 are the translational velocities of the 
particles immediately prior to collision.) J;. is the impulse tangential to the point of 
contact. To incorporate a surface friction coefficient, the value of JT is found by a 
two-step process. First, the impulse is computed assuming that there would be no 
tangential slip between the particle surfaces. This test case will be called S, and is 
defined 

where o1 and o, are the particle angular rotation rates, is the ratio of the square 
of the particle radius of gyration to the square of the particle radius. The value of 
llIT1l is then compared against the value computed for 1 1  JNll to see if the ratio exceeds 
a specified surface friction coefficient p. If the surface friction is not exceeded, then 
there will be no slip between the particle surfaces and 4 is set equal to .TT, i.e. 

If ~ ~ ’ & ~ ~ / ~ ~ & ~ ~  p then 4 = ST. (2.4) 

However, if p is exceeded, the tangential impulse is chosen to have a magnitude of 
p\lJNll, acting in the direction of IT, i.e. 
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If llJkll/llJIll > P then 4 = PllJNll J;clll4rll. (2.5) 

The value of ,u for particle-particle collisions can be specified independently of its 
value, ,uw, for particlewall collisions. Except where explicitly stated, all of the 
results in this paper were computed for an infinite surface friction coefficient (i.e. on 
departure, after a collision, there is no slip between the particle surfaces or, 
equivalently, (2.3) always holds), just as in Campbell & Brennen (1985a). 

Properties are averaged by dividing the control volume into imaginary strips, 
which are slightly larger than a particle diameter wide in the y-direction and span the 
control volume in the x-direction. A t  specific intervals, the properties of the particles 
occupying the strip are sampled and the average over many thousands of sampling 
periods yields the value attributed to that strip. The contribution from a particle 
only partially occupying a strip is weighted by the portion of the particle that lies 
within the strip. The interval between samples is roughly the time it takes each 
particle in the simulation to undergo one collision. A more detailed discussion of the 
averaging procedure is given in Campbell (1982). It is debatable whether values, so 
averaged, may be considered to be the corresponding ‘continuum ’ quantities, 
especially when (as shall be shown) the sampled quantities vary strongly over the 
non-continuum lengthscale of a particle diameter (which is approximately an 
averaging strip width) ; in other words, is this appropriate averaging of the particle 
properties to yield what would be considered to be continuum values ‘2 This is nearly 
a philosophical issue, and, as far as this paper is concerned, is irrelevant. It is 
sufficient to understand that, in this paper, the plotted values are simply averages of 
the properties of the particles that reside in these imaginary strips and not to try and 
give them any larger meaning. 

3. General features of the flow field 
Figures 3, 5 and 6 show comparisons of the Type A and Type B boundary 

conditions for three different concentrations, V = 0.65,0.45 and 0.15. The figures are 
similar in form to figure 1, but, in addition, show the distribution of scaled rotation 
rate, - w H / U .  (Note that, here, as in the rest of this paper, the granular temperature, 
T ,  which has units of (velocity)2, has been scaled by the apparent velocity gradient, 
U / H ,  so that it appears in the dimensionless form TH2/R2V. )  Consider first figure 3, 
which shows the results of simulations for an average solid fraction, F = 0.65. Kotice 
that the differences between the Type A and B boundary conditions are not as 
dramatic as one would have expected from the results of Campbell & Brennen 
(1985~)  - such as those reproduced in figure 1 .  Here, with the exception of no slip at  
the walls, the Type B condition shows many of the near-wall features associated with 
the Type A condition : larger velocity gradients, smaller densities and elevated 
temperatures - although to a significantly reduced degree. This indicates that, under 
these conditions, both boundaries are acting as temperature sources, and as will be 
argued in the following, this behaviour may be attributed to the way in which the 
boundaries apply torque to the particles. 

Figure 3(c )  shows the average rotational state of the particles, which is the only 
information not reported in Campbell & Brennen (1985a) and, as suggested above, 
may hold the key to the entire story. The Type A profiles show a large rotation rate 
at  the boundaries which is to  be expected because of the large torque that the 
boundary applies to  the particles. Near the centre of the channel the rotation rate is 
nearly uniform, but, near the wall, the rotation rate varies dramatically over scales 
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FIGURE 3. Comparison of the Type A (a) and B (0) boundary conditions for 
an average solid fraction D = 0.65. 

FIGURE 4. The two interacting mechanisms that collectively determine the rotational state of 
the particles. (a )  Shear-induced rotation, (a) perturbation impomd near the wall. 

of the order of a particle diameter (remember that the points are separated by the 
averaging strip width which is approximately a particle diameter). This behaviour 
can be explained as a competition between two mechanisms of angular momentum 
generation that are illustrated in figure 4. First (figure 4a) ,  in any shear flow a 
particle will primarily collide either with faster particles from above and behind or 
with slower particles in front and below. Both types of collision will induce a 
clockwise rotation of the particle and Campbell & Gong ( 1  986) have shown that the 
mean rotation rate will be approximately one half the shear rate - except a t  extreme 
values of the particle concentration. (Note that in the centre of the channel, the 
average rotation rate is, indeed, about half the local shear rate.) On colliding with a 
wall, however, the particle will pick up a large rotational velocity which is 
proportional to  the slip velocity. Subsequent collisions will induce a counter-rotation 
in the particles residing in the next layer further out from the wall, resulting in slower 
rotation. These particles, in turn, induce their own counter-rotation in the next layer 
out so that those particles exhibit a slightly larger rotation rate. This process is 
illustrated in figure 4(b) .  The rotational interchange continues until the wall effect 
(figure 4 b )  finally gives way to the mean shear effect (figure 4 a ) .  (Note that the 
mechanism illustrated in figure 4 ( b )  will, most likely, have a stronger influence in 
these two-dimensional disk flows than for t,hree-dimensional spheres. as the disks are 
all confined to the same plane.) 
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FIGURE 5. Comparison of the Type A (0 )  and B (0) boundary conditions for 
an average solid fraction, v = 0.45. 

The rotational velocity profile for the Type B boundary condition is much more 
uniform across the channel, although it still exhibits a similar, though far less 
pronounced, jagged shape near the walls. Note, however, that the jags are exactly 
out of phase with the Type A curve. It is a bit strange that there is any effect of'the 
Type B boundary as, unlike the Type A boundary, i t  exerts no torque to change the 
rotational state of the particles. But, at the same time, this behaviour may still be 
understood in terms of the discussion above. As shown in figure 4(a), a particle far 
from the walls will collide with faster particles from above and slower particles from 
below, both of which will induce clockwise rotation. Any boundary will block 
collisions on one side of the particles very near by, and, as the Type 23 boundary itself 
exerts no torque, those particles experience a smaller net torque than for those 
further away, resulting in a smaller average rotation rate right next to the wall. 
Then, following exactly the same logic as above, subsequent collisions will induce a 
counter torque and, hence, a slightly larger rotational velocity in the particles one 
layer away from the wall. This, in turn, will induce a slightly lower rotational 
velocity in the next layer out and so on. Thus, even though the Type B boundary 
does not transmit any torque, it has much the same effect as i t  causes a discontinuity 
in the distribution of angular momentum internal to the material. This will be 
discussed in more detail in the description of couple stress that is to follow. 

Note that this rotational interchange, so important t o  the generation of granular 
temperature, occurs over lengthscales of the order of a particle diameter. That 
continuum properties vary so drastically over non-continuum lengthscales raises the 
question of whether continuum mechanics can be successfully applied to the 
boundary problem. 

Figure 5 shows the same type of comparison as in figure 3 for a slightly lower 
average solid fraction, V = 0.45. Note that, in this figure, the characteristics of the 
Types A and B boundary conditions have returned to  the behaviour expected from 
Campbell & Brennen (1985a); i.e. the velocity gradient, density and temperature in 
the type B simulation are nearly uniform across the shear gap, while the Type A still 
shows elevated velocity gradients, elevated temperatures, and reduced density in 
the neighbourhood of the boundary. Also, while the rotational profiles still show the 
jagged behaviour near the wall, the size of the jags is much smaller than for the 
higher density results shown in figure 3. This indicates a diminished importance of 
the mechanism of rotational exchange illustrated in figure 4 ( b ) .  But that should not 
be surprising: for that mechanism to operate, a particle must collide with another 
and exchange its rotational state, soon after it has collided with the wall. The lower 
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the concentration, the more likely that a particle will move further away from the 
wall before its next collision, thus diffusing its rotation further away from the wall. 
In  this light, note that the first jag in the rotational velocity profile appears in the 
second point going outward from the wall in figure 5, while it appears in the point 
immediately adjacent to the wall in figure 3. Apparently, the particle concentration 
a t  the wall of figure 5 is small enough to keep the mechanism of figure 4 ( b )  from 
taking effect until a region of higher concentration is encountered. 

This rotational diffusion-like process is much easier to discern in figure 6. Here the 
average solid fraction is only V = 0.15 and, as the particles travel long distances 
between collisions, the flow might be considered to  be the granular equivalent of a 
gas. Note that the results of figure 6 look vastly different from those in figures 3 and 
5. Both the velocity gradient and solid fraction are nearly uniform across the 
channel, even for the Type A boundary; in fact, except for the slip velocity, these 
Type A profiles nearly mirror the Type B. However, the rotational and granular 
temperature profiles for the Type A and Type B boundaries are very different from 
each other. This behaviour might be understood as the logical extension of the last 
paragraph. But here, the interparticle spacing is so large that a particle will travel 
many diameters away from the wall before exchanging its rotational state in a 
collision. The Type A rotation rate increases monotonically from its value near the 
centre of the flow towards the large rotation rate applied a t  the wall. Exactly the 
opposite behaviour is apparent for the Type B boundary, which, by exerting no 
torque forces a local deficit in the rotation rate; there, the maximum rotation is 
observed in the centre of the channel and decreases steadily as the walls are 
approached. 

Again, despite the similarity of the velocity and solid fraction profiles, the Type A 
and Type B temperature profiles in figure 6 are very different from one another, but 
very similar to the corresponding rotational velocity distribution (which may be an 
indication of the importance of particle rotation in temperature production). Here, 
the Type B profile shows a maximum in the centre of the channel and a minimum 
at either boundary. This can be explained by nearly the same reasoning as was used 
to explain the rotational velocity profiles. Remember that by forcing a particle's 
centre to assume exactly the wall's velocity, the Type B boundary eliminates any 
temperature in the x-direction and thus acts as a sink of granular temperature. I n  
this light, the Type B temperature profile appears exactly as one would expect of a 
volume source of temperature with sinks at  the boundaries. The effect is heightened 
because the granular temperature is anisotropic (particularly a t  small densities) with 
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its largest component acting in the x-directiont -which is precisely the component 
that is absorbed a t  the wall. On the other hand, the Type A profile shows the 
expected maxima near either boundary and a minimum in the centre of the channel, 
although, strangely, there is a slight temperature reduction directly next to the 
boundary. The reason for the reduction is not immediately clear. Remember, 
however, that the source of the large temperatures near Type A boundaries results 
from the conversion of the coherent rotational motion applied by the wall to granular 
temperature through subsequent collisions with other particles. Then, one might 
speculate that a reduced temperature could be observed near the wall for small solids 
concentrations because the subsequent collisions that lead to temperature generation 
occur some distance away from the wall. 

Note that for F = 0.65 the Type B boundary acts as a source of granular 
temperature, for F = 0.45 the boundary acts as neither a source nor a sink, and for 
V = 0.15 the boundary acts as a temperature sink. Different flow characteristics (in 
this case, the mean solid fraction, v) will lead to  different boundary behaviour. This 
indicates that one cannot separate the character of the boundary from the flow i t  
bounds, but the two must be considered as a unified whole. 

All of the above observations have common themes. The first is that the boundary 
exerts such a strong influence that it is not always possible to obtain uniform shear 
flows from flat wall-bounded systems. Secondly, the appearance of higher-shear- 
rate/lower-density/higher-temperature zones near the boundary seems to be 
interconnected and to be related to the range of free motion of the particles. When 
the density is large, such as for F = 0.65 in figure 3, the particle motion is so restricted 
that whatever a particle picks up from the boundary is almost immediately 
exchanged in collisions with neighbouring particles. At such large concentrations, 
even the weak disturbance in the angular momentum distribution that is generated 
by the Type B boundary has noticeable consequences in the velocity and 
concentration profiles. By F =  0.15, the effects of the boundary are so dispersed 
throughout the flow that even the Type A exhibits a uniform shear rate and density 
profile. This may be thought of as a kind of Knudsen number effect. For v = 0.65, the 
mean free path of a particle is significantly smaller than a particle diameter, 
confining any disturbances introduced by the boundary to the immediate 
neighbourhood. At V = 0.15, however, the mean free path is at  least several particle 
diameters so that the wall effects may easily diffuse far from the wall. 

The above also indicates that much happens over scales of particle diameters - at 
least near boundaries. This leads one to expect that there might be a strong effect of 
the ratio of the continuum scale, the wall spacing, to the microscopic scale, the 
particle diameter. To test this sensitivity, several simulations were run with varying 
wall separations of 10, 20, 40 and 80 particle radii. All of these were run with Type 
A boundaries as these demonstrate the strongest changes over particle scales. The 
results are presented in figure 7 (a-c), corresponding to average solid fractions of i~ = 

t This is a byproduct of the mechanisms that generate granular temperature (see, once again, 
the discussion in Campbell 1990). In  addition to the collisional mechanism described previously, 
granular temperature can also be generated as a particle moves parallel to a velocity gradient; the 
difference in mean velocity between its initial and final positions appears as a random addition to 
the particle’s velocity, but only makes a contribution in the direction perpendicular to the velocity 
gradient (in this case, the 2-direction). Naturally, this will only make a significant contributeion to 
the temperature a t  small densities when the particles move long distances between collisions. 
Campbell refers to this as ‘Mode-2 ’ temperature gcneration and it is used to explain large normal 
stress differences abservcd in granular flow at low densities (see Campbell k, Gong 1986 and the 
stress measurements presented in the next section). 
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0.65,0.45 and 0.15, respectively. Note that the H I R  = 80 data have not been plotted 
to reduce the clutter on the figure. (Even so, i t  is hard to distinguish the various 
values of H / R  within the figures and I must ask the reader to  bear with me here.) 
However, when plotted in this scaling, t,he H / R  = 80 data for v =  0.65 and 0.46 
nearly overlay the H / R  = 40 data far from the boundaries. (It was on this basis that 
the spacing of H / R  = 40 was chosen for the bulk of these simulations.) Overall, this 
is encouraging as it indicates that, beyond a certain spacing, the behaviour of the 
material far from the walls is determined by the continuum scales of the wall velocity 
arid separation distance; if this were not so, the rheological properties of the system 
would not, scale in any way with the imposed shear rate U I H .  But, many events, such 
as t>he rotational exchange illustrated in figure 4 ( b )  and its corresponding temperature 
generation, occur on scales of the order of a particle diameter. As these effects were 
apparent for all gap widths, and, as the vertical coordinate is normalized by the 
continuum scale, H ,  instead of the microscopic scale, R ,  one can never expect the 
profiles to overlap in the immediate neighbourhood of the boundary. It is apparent 
from all three figures that the H / R  = 10 separation is dominated by the effects a t  the 
wall. This may best be seen by examining the rotational velocity distributions. For 
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the two higher concentration plots shown in figures 7 ( a )  and 7 ( b ) ,  the jagged 
behaviour near the boundaries (the results of the mechanism illustrated in figure 4b)  
is missing from the curves. Instead, the H/R = 10 points just show a slightly elevated 
rotation rate near the walls. This could also explain the reduced granular temperature 
in the vicinity of the walls since a smaller rotational velocity implies a smaller 
conversion of rotational velocity into granular temperature. At larger separations, 
the higher density plots assume the more characteristic forms that were described 
above. The sole exception is the = 0.15 case, for which it is apparent that, due to 
the large mean free path of the particles a t  such a small density, the wall effect 
extends far into the flow. Notice that there is a general trend of increasing rotation 
rates and granular temperatures as the spacing is increased. With the exception of 
ii= 0.15, this process halted by H / R  = 40 as those measurements matched the 
corresponding H / R  = 80 results. That this process continued for the ii = 0.15 case is 
clearly the result of the diffusion of these properties away from the wall by the 
enhanced free motion of the particles. 

It may seem that the Type A condition, with its effectively infinite friction 
coefficient, is a bit unrealistic and, therefore, it may be prudent to examine the effects 
of friction. This is illustrated in figures 8 and 9, which show the results of what are 
essentially Type A calculations except that they possess finite values of the surface 
friction coefficient. In the former, the particle-particle surface friction coefficient, p, 
is varied, while the particle-wall friction coefficient, p,, is held fixed a t  p, = 1.0 ; and 
in the latter, the particle-particle coefficient is held fixed a t  p = 0.5, while p, is 
varied. All of these studies were performed at an average solid fraction of F = 0.45. 
Physically, varying the particle friction while holding the wall friction coefficient 
fixed varies the rate at which rotational velocity is exchanged during particle-particle 
collisions. Naturally, the curves show the expected top to bottom symmetry, and, to 
reduce the clutter on the figures, only the data from the top half of the control 
volume is plotted. Notice that, surprisingly, the velocity and solid fraction profiles 
in figure 8 appear to be relatively independent of the surface friction. However, the 
rotational velocity profiles, shown in figure 8 ( c ) ,  show a strong effect. Most obvious 
is that, except right next to the wall, the larger the friction coefficient, the larger the 
mean rotational velocity. Rut this behaviour is reversed in the immediate vicinity of 
the wall as the larger the surface friction, the more resistance the surrounding 
particles bring to bear against the rapid rotation induced by a wall collision. Note 
also that all of the profiles except that corresponding to p = 0.1 show, to varying 
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degrees, the jagged shape near the wall that  is characteristic of the rotational 
exchange mechanism illustrated in figure 4 ( b ) .  The p = 0.1 profile shows a gradual 
variation near the wall that  is characteristic of a more diffusive type of rotat,ional 
velocity transport (i.e. is similar to that for the = 0.15 distribution plotted in figure 
6) ,  presumably because the coupling between the particle surfaces is so weak. Large 
variations are also apparent in the granular temperature profiles. Note that, as 
changing the particle surface friction changes the coupling between the particle 
surfaces, such action might be interpreted as changing the internal conversion of the 
coherent rotational velocity into granular temperature. This process may be seen in 
figure 8, in which the granular temperature is largest for the largest values of the 
surface friction and generally decreases as the surface friction is reduced, clearly 
showing the importance of the rotational exchange a t  the boundary in determining 
the overall granular temperature distributions in the flow. (As friction introduces 
another dissipation mechanism, one would generally expect, in the absence of such 
strong boundary effects, lower granular temperatures for larger surface frictions.) An 
interesting feature is that  the coefficient of particle surface friction changes the 
temperature gradient a t  the wall and, thus, appears to  govern whether the wall acts 
as a local source or sink of granular temperature. For the smaller values of the 
friction coefficient, there is a negative temperature gradient immediately ap- 
proaching the wall, implying that there is conduction of granular temperature into 
the boundary ; this gradient becomes smaller as the surface friction is increased until, 
for infinite friction, the gradient has nearly disappeared and the wall appears to be 
an insulator. (However, figure 5 shows that, if the wall surface friction is also infinite, 
the wall acts as a source of granular temperature.) But one should be careful about 
making such attributions as these effects are confined to  within a particle diameter 
of the wall; further away, on continuum scales, the temperature decreases steadily 
toward the channel centre, indicating that, globally, all the boundaries are acting as 
sources of granular temperature. 

Further insight can be found from figure 9 which shows the effect of varying the 
particle-wall friction coefficient, p,, while the particleparticle friction coeflicient, p, 
is held fixed. Once again, very little change is observed in the velocity and solid 
fraction profiles ; the only significant velocity effect occurs for the smallest friction 
coefficient, ,uW = 0.5, for which the coupling between the material and the wall is so 
weak that only a small velocity gradient can be generated within the flow. (In fact, 
the simulation would not shear and exhibited essentially solid behaviour for much 
smaller pW.) Furthermore, the larger the friction coefficient the larger the rotational 
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velocity that is generated within the centre of the flow. At  first glance, it may appear 
that changing pw changes the rotational velocity in the centre of the channel, with 
little effect on the rotation a t  the wall; however, remember that this is plotted on a 
log scale, so that the apparently small difference in rotation rate a t  the wall is 
consistent with the apparently larger variation towards the centre of the channel. 
More interesting is the variation in the granular temperature profiles. Again, the 
larger the friction coefficient. the larger the magnitude of the granular temperature. 
However, for the smaller values of p,, the temperature gradients indicate that the 
wall is locally acting as a source of granular temperature, while, for the larger p,, the 
wall is locally acting as 8 temperature sink (but, again, only on microscopic scales). 
Presumably, this represents the interplay between the collisional and rotational 
sources of the granular temperature. 

4. Internal stress distribution 
There are two mechanisms of internal momentum transport by which stress is 

transmitted through a granular material. The first, or streaming mode, denoted 7s, 

reflects the momentum that is carried by particles as they move through the bulk 
material following their random velocity. In  appearance, the streaming stress tensor 
is exactly the same as the Reynolds’ stress tensor in turbulent flow: 

7, = -pp v(u’u’) (3.1) 

where (u’u’) is the average of the dyadic product of the fluctuating velocity vectors, 
u’. Obviously, the magnitude of the streaming stresses should be related in some way 
to the magnitude of the granular temperature. Note that z, is necessarily symmetric. 
Also, when two particles collide, momentum is transferred from the centre of one 
particle to the other. This is the collisional mode of momentum transfer and results 
in the collisional stress tensor, Z, : 

Z, = 2R(Jk) 7, (3.2) 

where ( J k )  is the average of the dyadic product of J, the vector impulse exerted by 
a collision, k is the unit vector pointing along the line connecting the particle centres 
at the time of collision and 7 is the collision rate per unit volume. This reflects the 
fact that every collision causes the transport of momentum, J ,  a distance 2R in the 
direction k between the particle centres. Note that, as part of the impulse results 
from the frictional coupling of the particle surfaces, J need not point in the same 
direction as k, so that the collisional contribution may possibly make asymmetric 
contributions to the stress tensor. Obviously, the collisional mode will be more 
important a t  large density where a particle cannot move far between collisions and 
the streaming mode is dominant a t  low densities where collisions are infrequent and 
particle motion is less restricted. The total stress tensor, Z, is found by summing these 
two contributions. For more information on how the stress tensor is found, the reader 
is referred to Campbell & Gong (1986). Here, as there, the plotted stresses are scaled 
by dividing the actual stresses by pp R 2 ( U / H ) 2 ,  following the scaling originally found 
for shear flows by Bagnold (1954). Note that the plots show absolute value of the 
stresses; in all cases, the normal stresses are negative and the shear stresses are 
positive. 

Previous computer simulation studies that measured the stress tensor in granular 
flows (e.g. Campbell & Gong 1986 ; Campbell 1989) have purposely chosen conditions 
for which the state of stress is uniform across the control volume. Tn this study, 
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however, the boundaries will induce non-uniformities in stress. To observe the non- 
uniformities, the distribution of stress across the channel was found by dividing the 
control volume into strips parallel to the wall and averaging the state of stress within 
the strips. For the streaming stresses, this procedure is exactly that used to average 
the velocity and the other continuum properties. But for the collisional stresses, 
there is the possibility that  the colliding particles may be in different strips; thus, the 
fraction of (Jk) attributed to each strip is weighted by the transport distance 
through that strip. 

There are some fine points that must be taken into account in order to  properly 
sample the stresses near the walls. Because the particles have finite size, the centre 
of a particle cannot come closer to the wall than the radius of the smallest particle 
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in the system. In  a collision with the wall, forces are applied to a particle in the x- 
and y-directions. These impulses are conveyed along a vertical line connecting the 
centre of the particle with the wall. Thus, a collision results in the transport of 5-  and 
y-direction momentum along a line segment one particle radius in length and 
oriented in the y-direction. Consequently, the only stresses transmitted within one 
particle radius of the wall are the T , ~  and rYy collisional stresses applied a t  the wall. 
Thus, one might c o n d e r  that the wall has a range of influence extending one particle 
radius outwards into the flow. No particle centre extends into that region nor can a 
contact point between two colliding particles lie therein. Thus, in that zone, the only 
stresses are the rXy  and rYy stresses applied by the wall, and any T,, and rYs 
components can only be generated further outward in the flow as a response to  the 
forces applied at the boundaries. (However, the 7,. and ryZ stresses show significant 
variation across the control volume, indicating a strong boundary influence.) The 
values corresponding to the stresses applied a t  the wall are plotted as points lying on 
the upper boundary. As these stresses are only transmitted by collisions with the 
wall, they only appear in the plot of the total and collisional stresses. In  order to 
properly evaluate the stresses in the averaging strip nearest the wall, the volume 
associated with the wall-dominated zone (i.e. a strip one particle radius wide) must 
be excluded from the averaging volume. 

Figures 10 and 11 show the internal distribution of stress for the Type A and Type 
B boundary conditions that correspond to  the results shown in figures 3 ,  5 and 6. 
Here, the total stresses are plotted along with t,he collisional and streaming 
contributions. (As z, is necessarily symmetric, only thc rTy and not t h e  ryx component 
is plotted in that frame.) Note that the complete stress levels for the Type B 
condition are significantly larger than for the Type A, illustrating that a difference 
in boundary condition can account for the difference between the stresses measured 
by Hanes & Inman (1985) and Savage & Sayed (1984). Note also that, a t  the rather 
large density ( v =  0.65) shown in figures lO(a) and 11 (a) ,  the collisional mode of 
momentum transport is much more important than the streaming, but for the lowest 
average solid fraction, V =  0.15, plotted in figures 1O(c)  and 11 (c), the streaming 
stresses dominate. As would be expected, even in the higher plots, the streaming 
stresses are noticeably larger within the lower density and high granular temperature 
regions near the boundaries, and are accompanied by correspondingly smaller 
collisional stresses. Furthermore, in the Couette flow configuration, the T,, and T ~ ,  

stresses cannot be applied by the boundaries; hence, these stresses are self- 
equilibrated and the values they assume are completely determined by the flow 
conditions. Also, the rZy and rYy stress exerted at one wall can only be balanced on 
the opposite wall. Hence, these two stresses must be uniform across the channel and 
equal to the values applied a t  the wall. Finally, note that normal stress diferenoes, 
T,, > rY1/, are present in the flow, reflecting the anisotropy in the granular 
temperature. These are similar to  those observed by Campbell & Gong (1986). The 
normal stress differences are much more noticeable in the low density, v = 0.15 plots, 
but can also be seen in the low density regions near t,he walls of the = 0.45 and 
v = 0.65 plots. 

In  the few layers nearest the walls of the Type A boundary distribution plotted in 
figure 10, the stress tensor is asymmetric, i.e. rZy + rYz. This is a bit surprising since, 
in elementary continuum mechanics, there is a simple proof that the stress tensor 
must be symmetric. The proof involves relating the angular momentum change of 
the bulk material lying within a contour to the contour integral of the stress; on 
shrinking the contour, the moment of inertia disappears faster than the contour 
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figure 10. 

integral, implying that the stress tensor is symmetric. This argument breaks down 
for a granular material as, for a continuum model to be valid, any such contour must 
contain several particles and, certainly, such a contour cannot be shrunk smaller 
than a particle. In  this light, i t  is reasonable to associate the asymmetry in the stress 
tensor with torques on the particles. Consider first the = 0.65 data shown in figure 
10(a). Now, the wall exerts a rZy stress but no ryZ stress, indicating that the particles 
receive a tremendous clockwise torque at the wall. But, in the layer nearest the 
boundaries, rys > rZy, indicating that the granular mass exerts a counterclockwise 
torque to resist the clockwise torque exerted by the wall. In  the second layer away 
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from the wall, the situation has reversed itself and rux < rzy, indicating that the 
particles in this region experience a clockwise torque. Finally, in the next layer out, 
although i t  is barely perceptible, 7yz > rxy, indicating, once again, that  a 
counterclockwise torque is being exerted in this region. Note that this pattern follows 
the jagged nature of the -wIl/TJ curve shown in figure 3, reflecting the rotational 
exchange mechanism illustrated in figure 4(b). Now, for the v =  0.15 data shown in 
figure lO(c),  ryx > rXy in all of the first four layers closest to the wall, implying that 
the material is exerting counterclockwise torques throughout this region to resist the 
large clockwise torque applied a t  the wall. As previously discussed, this reflects the 
fact that, a t  such a low concentration, a particle, following a wall collision, is likely 
to  travel a long way out into the flow before i t  collides again. I n  the F =  0.65 case 
shown in figure lO(a) ,  the particle has almost no freedom of motion and the 
countertorque applied by the material is confined to the region immediately adjacent 
to  the wall, leading to rotational exchange by the mechanism illustrated in fib sure 
4(b) .  In  the F =  0.15 case plotted in figure lO(c),  the countertorque applied by the 
material is distributed over a wider region. Note that this corresponds exactly to  the 
rotational velocity distribution shown in figure 6, which shows a gradual decrease in 
rotation rate, from the large rotations applied a t  the wall to the much smaller values 
seen near the centre of the channel. The stress distribution for F =  0.45, shown in 
figure 10(b), is a compromise between these two cases. There, in the two layers 
nearest the wall, 7xy > ryx (counterclockwise torque), but then the two stresses 
reverse roles in the third layer out, where rYz > rxy. Note that this is, once again, 
consistent with the rotational distribution shown in figure 5 ,  which does not show the 
jaggedness associated with the rotational exchange mechanism of figure 4 (b) until 
the third layer out. This behaviour may be understood by noting, from the 
corresponding solid fraction distribution shown in figure 5, that  the density is 
significantly reduced in the two layers nearest the wall and, consequently, one might 
expect low-density behaviour similar to that shown in figure lO(c) ; high-density 
behaviour, similar to that shown in figure lO(a), appears in the higher-density 
regions near the centre. 

Similar asymmetries, though much less dramatic, are also apparent for the Type 
B boundary results shown in figure 11. I n  order to make the asymmetries apparent 
a t  all, the horizontal scales of the three points nearest the wall have been expanded 
in a bubble within the total stress figure. This is an indication that, by exerting no 
torque, the Type B boundary alters, ever so slightly, the internal distribution of 
angular momentum. 

The presence of asymmetric stresses poses somewhat of a quandary as they imply 
that there are unbalanced torques on the particles and, if there is an unbalanced 
torque, the angular velocity should be continually accelerating. Yet these are steady 
flows so the average angular velocity must be constant with respect to time, which 
requires that the torques that are implied by the asymmetric stress tensor must 
somehow be balanced. This indicates that  the stress tensor alone is inadequate to 
explain the transport of angular momentum within the granular mass. It is easy to 
see that, in the process of averaging the microscopic details of the collisions to obtain 
the macroscopic stress tensor, much of the information about the moments has been 
lost ; for example, there are continuous ranges of collisions exerting infinitely many 
different torques that will yield the same dyadic product, Jk, and, consequently, 
make the same contribution to the stress tensor. I n  a macroscopic continuum sense, 
then, the transport of angular momentum is independent of the transport of linear 
momentum even though, on the microscopic level, both result from tjhe same 
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conditions. Thus, another field variable is required to describe the transport of 
angular momentum. The ‘ couple stress tensor ’ is a direct analogue to the Cauchy 
stress tensor and reflects the transport of angular momentum both by streaming and 
collisional action. The streaming portion of the couple stress tensor, M,, is given by 

M, = - p P / ? v R 2 ( u ‘ ~ ‘ ) ,  (3.3) 

where pp/?vR2 may be thought of as the particle moment of inertia per unit volume 
and (u’o’) is the average of the dyadic product of the fluctuating linear and angular 
velocities. Also, each collision causes a transport of angular momentum R J x  k ,  a 
distance 2R (between the particle centres) in the k-direction. Thus, the collisional 
contribution to the couple stress tensor is given by 

Mc = 2R2(Jx  kk)  7, (3.4) 

where, once again, 7 is the collision rate per unit volume. The complete couple stress 
tensor is found by summing the streaming and collisional contributions. Each 
component, Mi,, of the couple stress tensor may be read as ‘the surface torque 
component in the i direction exerted on a surface with outward pointing normal unit 
vector in the j direction’. In  two-dimensions, where the only permitted rotation is 
about an axis oriented in the z-direction, there are only two non-zero couple stress 
components, M,, and M r y ,  representing the transmission of z-direction angular 
momentum in the x- and y-directions respectively. Figure 12(a, 6) shows the 
collisional and streaming contributions to the couple stress tensor for a Type A 
boundary a t  a high density, 7 = 0.65. The couple stress data which are to follow have 
all been scaled by dividing by pp R3( U/H)2 .  The surprising thing about this figure is 
that the streaming mechanism makes the largest contribution to the angular 
momentum transport, even a t  such a large concentration. (And, of course, the 
collisional contribution is even smaller as v is further reduced.) 

Performing an angular momentum balance on a control volume in steady flow, one 
obtains the expression 

M .  %3,1 - eijlc 7 jk  = 0. (3.5) 

Thus, the asymmetry in the stress tensor is balanced by the divergence of the couple 
stress tensor. In  two dimensions, the particles are forced to rotate within the plane, 
and, as in Couette flow all gradients are in the y-direction, this expression becomes 

where z is the coordinate direction out of the plane of motion. Thus, even though 
there will be an M,, component generated in the granular mass, it represents self- 
equilibrated torques and is not dynamically important. 

Figures 13 and 14 show the distribution of couple stress across the channel for the 
Type A and Type B boundaries, respectively. Also plotted for comparison are the 
corresponding rotational velocity distributions. Here, unlike the Cauchy stresses 
plotted in figures 10 and 11, the actual (and not the absolute) values of the couple 
stresses are shown since the components change sign across the control volume. The 
points on the top and bottom edges of the plot represent the torques applied by the 
walls. Both N,, and Mzy components are shown even though (3.6) indicates that 
the only dynamically important component is Mzy. (Remember, however, that it 
is the gradients of M z y ,  and not its actual numerical values, that are important 
in determining the rotational state of the particles.) Furthermore, the torque applied 
at the boundary only contributes to the N,, component. 



I Y 
H 

H2/@,R3Ua) Mi? H 2 / @ ,  R3U2)  

FIGURE 12. (a )  The collisional contribution to the couple stress. The wall corrections have been excluded from these data. 
0, M,,; 0, Mzu. ( b )  The streaming contribution to the couple stress. A, M z z ;  *, L " I ~ ~ .  B = 0.65, Type A boundary. Note 
that the horizontal scales for the plots are different. 

3 
6 
? 



132 C. 8. Campbell 

1 .oo 

0.75 

Y ~ 0.50 
H 

0.25 

0 
-1.2 -0.8 -0.4 0 0.4 0.8 1.2 0.01 0.1 1 .o 10 

1 .oo 

0.75 

Y ~ 0.50 
H 

0.25 

0 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.01 0.1 1 .o 10 

Mii H 2 / ( p ,  R3U2)  - w H / U  

FIGURE 13. The distribution of couple stress across the channel for the Type A boundary : (a)  V = 

0.65, ( b )  v = 0.45, (c) v = 0.15. Also plotted are the corresponding rotational velocity distributions. 
Note that the horizontal scales for the various plots are different. 0 ,  M z z ;  0, MZY. 

Figure 13 (a-c) shows the distribution of couple stress across the channel for V = 

0.65, 0.45 and 0.15, respectively, all derived with Type A boundaries. These 
correspond to the stress tensor measurements shown in figure 10. Note, first, that the 
larger the density, the larger the absolute values of the imparted couple stresses. 
Also, note that the top wall imparts a negative value of M,, while the bottom wall 
exerts a positive value. This may seem strange to the uninitiated as both boundaries 
exert negative (clockwise) torques on the particles. However, the outward-pointing 
normal unit vector changes sign between the top and bottom wall and, consequently, 
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FIGURE 14. The distribution of couple stress across the channel for the Type B boundary: (a )  v = 
0.65, (b)  v = 0.45, (c) v = 0.15. Also plotted are the corresponding rotational velocity distributions. 
0,  M,,; 0, Mzg. 

the sign ofM,, must also change in order to represent the application of the same 
torque by the lower wall. Furthermore, both components of couple stress go nearly 
to zero in the centre of the channel, indicating that couple stresses are only 
significant players near the boundaries. Perhaps the most important point to be 
gained from examining these figures is that the couple stress follows the behaviour 
of the rotational velocity distribution; i.e. the jags in the rotational velocity 
distributions correspond to sign changes in Mzy. A t  the same time, the couple stress 
mirrors the asymmetry in the stress tensor. Also, the reader can see behaviour 
consistent with (3.6), although it is impossible to make a quantitative comparison as, 
with such rapid changes between neighbouring points, the gradient of Mzy cannot be 
accurately determined. But, remember that these points represent averages over 
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strips that are only slightly larger than a particle diameter wide and that suvh radical 
changes over such small scales lie a t  or beyond the limit of applicability of continuum 
theories. 

Figure 14 shows the corresponding couple stress distribution for the Type B 
boundary. As these boundaries exert no torque, the magnitudes of the couple stresses 
that are generated are significantly reduced. Still, it is apparent that the boundary 
does induce perturbations in the couple stresses within its immediate vicinity. Xotice 
that the couple stress near a Type B boundary is positive near the top wall and 
negative near the bottom, reflecting that a counterclockwise torque is being 
generated a t  both boundaries. This is exactly opposite to the behaviour of the Type 
A boundary, for which there are large negative couple stresses a t  the upper wall and 
positive couple stresses a t  the lower wall, due to the large clockwise torques imposed 
a t  each boundary. Consequently, the natural clockwise rotation of the particle is 
inhibited near Type B boundaries. This is a reflection of the fact that, even b y  
inducing no torque of its own, the Type R boundary disturbs the natural distribution 
of angular momentum in the flow. 

5. Conclusions 
In  any fluid-like flow, the boundaries are extremely important in that they, with 

the possible collaboration of body forces, ultimately drive the motion. This paper has 
studied the effects of two different flat-wall boundaries on Couette flows of two- 
dimensional granular materials. The Type A boundary assumes that. on contact with 
a wall, there is no-slip between the particle surface and the wall, and, for the Type K 
boundary condition, there is no-slip between the particle centre and the wall. 
(Historically, these two boundary conditions are linked to the work of Campbell & 
Brennen 1985a, which provided the impetus for this current study.) The two 
boundary conditions are artificial in that the Type A boundary assumes an infinite 
friction coefficient between a particle and the wall (although, all the features of the 
Type A boundary are present in flows with more realistic frictional interactions) and 
that there is no way to physically realize a type B boundary at  all. Konetheless, they 
are important to study as they represent extremes of the manner in which a 
boundary can apply torque to the flowing particles. By allowing no slip between the 
particle surface and the wall, the Type A condition applies the maximum possible 
torque to a colliding particle and the Type B condition provides no torque at  all. 

The most important result of this paper is that the way in which a boundary 
transmits torque to a particle can have a significant influence on the overall flow 
behaviour. One byproduct of the Type A boundary is large local granular 
temperature generation. This is a direct result of the nature of the boundary as the 
coherent rotational velocity applied by a wall collision is converted, on subsequent 
collisions, into random velocities. But both boundary types, by disturbing the 
natural distribution of angular momentum within the material, lead to the generation 
of asymmetric stresses and couple stresses in the immediate neighbourhood, even 
though their effects may be insignificant further away. An important observation is 
that frictional materials need to be modelled as polar materials, a t  least in the 
neighbourhood of boundaries and that one factor that characterizes a boundary is 
the way it  transmits couple stress to the flowing material. 

Many of the interesting observations in these results occur over lengthscales of the 
order of a particle diameter. I n  fact, the dramatic differences between the Type A 
and Type B boundaries are caused by moving the point a t  which the impulse from 
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a boundary collision is applied one particle radius further away from the wall (a 
distance that should be insignificant from a continuum point of view). The 
importance of particle scales is also apparent in the rotational velocity, stress tensor 
asymmetries and the couple stress distributions as a result of the rotational transfer 
mechanism illustrated in figure 4 ( b ) .  Furthermore, this mechanism is extremely 
important in converting the coherent rotational velocity administered at  the wall 
into granular temperature and consequently cannot be ignored if the physics of the 
boundary are to be modelled exactly.? As so much of importance occurs over such 
small lengthscales, it is questionable whether boundary phenomena can be 
adequately modelled by continuum mechanical approaches. But any final de- 
termination will have to wait for the development of theoretical models that can 
accurately incorporate significant particle friction. 

Finally, these results indicate that the characteristics of the boundary cannot be 
specified independently of the flow that  it  bounds. Different flow conditions, e.g. 
different mean particle concentrations, result in very different behaviour from what, 
physically, is the same boundary. Hence, the flow problem cannot be considered 
separate from the boundary, and the two must be solved together as a unified whole. 
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